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Extended Double Soliton Solution Families for the 
Statically Axisymmetric Self-Dual SU(2) Gauge 
Field Equations 

Y a - J u n  G a o  l a  

Received March 17, 1997 

By using the extended double complex function method, the statically 
axisymmetric self-dual SU(2) gauge field equations and, in turn, the 
Belinsky-Zakharov solution-generating technique are generalized to extended 
double forms. The restriction on "soliton index" in the original solution-generating 
technique is eliminated so that for each positive integer, we can obtain physical 
soliton solutions of the statically axisymmetric self-dual SU(2) gauge field 
equations in pairs. Some sufficient conditions are given for seed solutions, with 
which the corresponding scattering wave functions can be written out directly. 
As examples, some soliton solution families are given, most solutions of which 
are new. 

1. I N T R O D U C T I O N  

The stat ical ly ax i symmet r ic  self-dual  SU(2)  gauge f ield equations,  SAS-  
DSU(2)GFEs ,  on four-Eucl idean space can be writ ten as (Yang, 1977; Lete-  
lier, 1982) 

f V 2 f -  V f -  Vf  + V g .  Vg = 0 
(1.1) 

f ~ 2 g  _ 2 V f .  Vg = 0, fV2~ - 2 V f - V ~  = 0 

w h e r e f  = t i p ,  z) is a real, and g = g (p, z) a complex ,  function o f  the cy l inder  
coordinates  p and z. Here V and V 2 denote,  respect ively,  the gradient  and 
Laplace  operators  with respect  to the fiat th ree-d imens ional  metr ic:  

d/2 = dp 2 + d z  2 -[- p2ddp2 (1.2) 
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Letelier (1982) gave an inverse scattering method (ISM) for obtaining soliton 
solutions of equation (1.1) which extends the Belinsky-Zakharov (BZ) 
method (Belinsky and Zakharov, 1978, 1979). However, as a result of the 
reality requirement of physical solutions, when starting from a physical seed 
solution, we can obtain a physical n-soliton solution only for n an even 
number. If we try to obtain physical soliton solutions with odd-number indices, 
we must start from a nonphysical seed solution, but in this case, the soliton 
solutions with even-number indices are nonphysical. Zhong (1985) suggested 
a double complex funct ion method, realized an analytic continuation of the 
NK substitution (Neugebauer and Kramer, 1969), and overcame similar diffi- 
culties in the theory of reduced gravitation fields (Zhong, 1988; Gao and 
Zhong, 1992). However, since the function g(p, z) in equation (1.1) is complex, 
the double complex method in Zhong (1985) is no longer valid for the self- 
dual SU(2) gauge fields unless we consider only the special case of g(p, z) 
= ~(p, z)e i~' with cr(p, z) being a real function and a a real constant (Witten, 
1979; Zhong, 1989), but we shall not make this restriction in the present 
paper. Moreover, we noted that if (f, g) is a solution of equation (1.1), so is 
(f, ei~ with 0 a real constant. Therefore, in common schemes there is 
even no homologue of the NK substitution for equation (1.1). Recently, we 
suggested an extended double complex function method and used it to obtain 
new symmetries of the reduced gravitation field equations (Gao et al., 1997). 
In the present paper, we shall use this method to study the SASDSU(2)GFEs 
and find that this enable us to overcome all of the above-mentioned difficulties 
and obtain some new results. 

In the Preliminaries below, we recall some relevant concepts and results. 
In Section 2, we give an extended double form of the SASDSU(2)GFEs, 
where the extended NK substitution is found and its "extended analytic 
continuation" is realized automatically. In Section 3, the BZ ISM is general- 
ized to an extended double form, which enables us to get rid of the restriction 
on the soliton index. Starting from an extended double-seed solution, we can 
obtain a pair of physical soliton solutions of the SASDSU(2)GFEs for every 
positive integer n. The "scattering wave function" is the keystone of the ISM, 
but obtaining it in general is very difficult. In Section 4, we study the Lax 
pair of the extended double ISM and find that for some kinds of seed solutions 
the scattering wave functions can be obtained directly (one need not solve 
concretely the scattering equations). Finally, in Section 5 we give as examples 
some soliton solution families, most of which are new. 

Pre l iminar ie s  

Here we briefly recall relevant concepts and notations of the extended 
double (ED) complex function method from Gao et al., (1997). Essentially, 
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the ED complex number ring (denoted by EDC) is a continuation of the 
original double complex number ring given in Zhong (1985). More explicitly, 
let i and J denote, respectively, the ordinary and the ED imaginary unit, i.e., 
J = j ( f  = - 1 ,  j r _+i) or J = ~ (e: = +1, ~ :g +1). If a series 
Y~n%01anl, an ~ C (ordinary complex number field) is convergent, then 
a(J )  = En=0a,./~ 2n is called a double ordinary complex (DOC) number, which 
corresponds to a pair (ac, an) of ordinary complex numbers, where ac := 
a ( J  = j ) ,  aH := a(J  = e). When a(J )  and b ( J )  both are DOC numbers, then 

c ( J )  = a ( J )  + J b ( J )  (1.3) 

is called an ED complex number; it corresponds to a pair (Cc, cn), where Cc 
:= c ( J  = j )  = ac + j b c  and cH := c ( J  = e) = an + ebH are, respectively, 
an extended elliptic complex number and an extended hyperbolic complex 
number. We say that Co cH are dual to each other. All ED-complex numbers 
with usual addition and multiplication constitute a commutative ring, namely, 
the above-mentioned ring EDC. 

The ring EDC involves two imaginary units i and J, so we have two 
complex conjugation operations " - - "  and " - -"  which act on i and J, respec- 
tively, i.e., 

c(J )  := a ( J )  + Jb(J ) ,  c ( J )  := a ( J )  - J b ( J )  (1.4) 

where a ( J )  and b(J )  are ordinary complex conjugations of a ( J )  and b(J) .  
Note that, by definition, the operations " - - "  and "- -"  have nothing to do 
with each other. 

If  in equation (1.3), a ( J )  and b(J )  are DOC functions of  some ordinary 
complex (or real) variables zl . . . . .  zn, then c(zl . . . . .  z,,; J )  = a(zl . . . . .  z,,; 
J )  + Jb(zl  . . . . .  z,,; J )  is called an ED-complex function and we say c(zl,  

. . . .  zn; J)  is continuous, analytical, etc., iff a(zl . . . . .  z,; J )  and b(Zl . . . . .  
z,; J)  both, as ordinary complex functions, have the same properties. If a(J) ,  

b(J) ,  and zl . . . . .  z, are all restricted in R (real number field), then the theory 
above is reduced to the one introduced in Zhong (1985). 

In addition, in this paper we shall also use the commutation operation 
"o" of  the ED imaginary units j and ~, which is defined as 

o 
o: j - - - ) ) ;  j = e, (~ = j (1.5) 

2. E X T E N D E D  D O U B L E  F O R M  OF T H E  SASDSU(2 )G F ES 

In order to obtain an extended double form of the SASDSU(2)GFEs, 
we consider the following set of equations: 

f ' V 2 f  ' - V f ' .  7 f '  - V g ' .  Vg '  = 0 
(2.1) 

f ' V Z g  ' - 2 V f ' .  Vg' = O, f 'V2g -7 - 217f' �9 Vg --7 = 0 
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wheref '  = f ' (p,  z) and g'(p, z) are, respectively, real and ordinary complex 
functions of the real coordinates p and z. Equation (2.1) implies that there 
exists a function G = G(p, z) satisfying 

OoG = 9f'-2Ozg ', OxG = -9f-2Opg'  (2.2a) 

In other words, we can introduce a transformation V o f f ' ,  g' defined as 

V." f ' ,  g' ~ G = V(f', g') := I Pf'-2(Ozg' " dp - Oog' dz) (2.2b) 

such that equation (2.1) is invariant under the mapping 

f '  ---) F := p f , - l ,  g' ---)jG (2.3) 

This is a generalization of the NK substitution (Neugebauer and Kramer, 
1969) to an extended elliptic complex form. Now we extend "analytically" 
the function pair (F, jG)  to an ED-complex function pair, i.e., 

(F, jG)  ~ (F(J) ,  JG(J) )  (2.4) 

where F(J )  = F(p, z; J) and G(J)  = G(9, z; J) are, respectively, extended 
double real and DOC functions of the real coordinates p and z. 

Owing to equations (2.3) and (2.4), equation (2.1) is immediately 
extended to an ED form as 

F(J)VZF(J)  - r E ( J )  �9 r E ( J )  - JZ•G(J) �9 V ~ ( J )  = 0 

F(J)VZG(J)  - 2grF(J) �9 V G(J )  = 0 (2.5) 

F(J)VZG-(J) - 2VF(J) �9 V G(J )  = 0 

When J = j and J = e, equation (2.5) gives, respectively, equations (1.1) 
and (2.1). That is, equations (I. 1) and (2.1) are "analytically" linked by J 
and are dual to each other. 

From the discussions above and due to equations (2.2) and (2.3), we 
obtain the following theorem. 

Theorem I. If an ED solution (F(J) ,  G(J))  of equation (2.5) is known, 
then a pair of solutions of SASDSU(2)GFEs can be obtained as 

f(p, z) = Fc(p, z) = F(O, z; J = j) 
(2.6a) 

g(p, z) Gc(p, z) G(p, z; J = j) 

{~((p, z) = p/Fn(p, z) = p/F(p, z; J = e) 
p, z) V(Fn, Go) (2.6b) 

where the transformation V is defined in equation (2.2). 
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Thus from a single ED solution of equation (2.5) we can obtain two 
distinct solutions of the SASDSU(2)GFEs. Furthermore, these two solutions 
both corresponds to physical fields. Therefore we have realized automatically 
an "analytic" continuation of the extended NK substitution (2.3). 

3. E D  S O L I T O N  S O L U T I O N - G E N E R A T I N G  A L G O R I T H M  

It is usually not easy to solve equation (2.5). In this section, we shall 
generalize the BZ ISM into an ED form and discuss its effect. 

We introduce a double ordinary Hermitian 2 • 2 matrix function 

1(1 ) 
M(J)  = M(p, z; J) = - F ~  G O )  G(J)G(T) - f F 2 ( J )  (3.1) 

Then equation (2.5) can be written in an El) BZ form as 

Op[pOpM(J) �9 M-l(J)]  + Oz[pOzM(J ) �9 M-t(J)]  = 0 (3.2a) 

Mr(J)  = M(J)  (3.2b) 

det M(J)  = _ j 2  (3.2c) 

" t "  denotes the ordinary Hermitian conjugation. Conversely, if 

where 

2hp 2h 2 
Do := ~o + p2 + h----------~ 0x, Dz := 0z p2 + X2 Ox (3.5) 

U(J) := p0oM(J) �9 M-~(J) ,  W(J)  := pa.M(J) �9 M - ' ( J )  

and ~(h ;  J) = q~(p, z, h; J) is an ED-complex 2 X 2 matrix function of p, 
z, and an ordinary complex spectral parameter h. Since by definition (3.5), 

where 
M(p, z; J)  is an ED solution of equations (3.2), then 

1 [M(J)]I2 
F(J)  - G(J)  - - -  (3.3) 

[M(J)h i ' [M(J)]ll 

satisfies equation (2.5). 
Equation (3.2a) is the integrability condition of the following ED Lax 

pair: 

Dp~(X; J) = pU(J) + XW(J)  ~(X; J) (3.4) 
p2 + X2 

Dzq.r(k; j )  = oW(J) - XU(J) W(K; J) 
p2 + X2 
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D"" o = D o, D'"z = Dz, U("J) = U(J), and W("-J) = W(J) ,  without loss_._ of generality, 
in the following we compatibly select qs(k; J)  satisfying qs(k;J) = ~ (k ;  J), 
i.e., being a DOC matrix function. By the treatments similar to that of Belinsky 
and Zakharov (1978, 1979) and Letelier (1982), we find that if q~0(k; J)  is 
a solution of equation (3.4) for a known M(J) ,  say Mo(J),  then the ED n- 
soliton solution M , ( J )  of equations (3.2a), (3.2b) can be obtained as follows: 

Mn(J)  = Idet M'(J ) t  -1/2 �9 M',,(J) 

[M'(J)]aa = [M0(J)]ab-  
~ [ F - l (  g)]lt, N~k)( g)  

k J= I IXk~ 

m~t)( J )[ Mo( g ) ]a~----~7(~ 
F/k(J) = = tti~(J) (3.6) 

ixtlx---~ + p 2 

N(ak)(J) = m~k)(J)[Mo(J)]b~, m~)(J)  = rnD~(J)[Q(k)(J)]b,~ 

Q(k)(j) = ~ o  l(p, z, h = ~k; J)  

det M',,(J) = ( -  l)np zn [ ]  IlXk I-2 det Mo(J)  
k=l 

where the m ~  are some DOC constants, the sum convention on the indices 
a and b is assumed (a, b = 1, 2), and 

2pl~k -2tx~ 
O0~k -- 132 q._ ~ 2 '  Ozl'kk --  p2 q_ ~2  (3.7) 

ILk ---- I-Lk(P, Z) = Otk --  Z ~ [(Otk --  Z) 2 q- p2] 1/2 

where the ct~ are some ordinary complex constants. Considering equations 
(3.2c) and (3.6), we have 

det[Mn(J)] = ( - l )  ~ det Mo(J)  

= ( -  1)~(-J  2) (3.8) 

From the definition (1.5), it is obvious that if M~(J) is an ED solution of 
equations (3.2a) and (3.2b), so is M,()) ,  and for any nonnegative integer k, 
we have 

det Mzk(J) = _ j2 ,  det M2k+l()) = )2 = _ j 2  (3.9) 

Let 

~M,,(J) when n is even 
~ " ( J )  = [ M , ( ) )  when n is odd (3.10) 
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Then 

det A,t,,(J) = _ j 2  (3.11) 

for any nonnegative integer n. Therefore we come to the conclusion that 
Atn(J) not only is an ED n-soliton solution of equations (3.2a) and (3.2b), 
but also always satisfies condition (3.2c) for any nonnegative integer n. Thus 
the BZ ISM has been extended to an ED form, and by means of the ED 
ISM, we have eliminated the restriction on the soliton index n in the original 
scheme. Once an ED n-soliton solution At,(J) of equations (3.2) is obtained 
for a nonnegative integer n, then a pair of dual n-soliton solutions of SASD- 
SU(2)GFEs can be easily given by using equations (3.3) and (2.6). 

4. SEED S OLUTION Mo(J) AND WAVE F U N C T I O N  ~ o ( k ;  J )  

From the above discussions we can see that the key step of the ISM is 
to find a suitable scattering wave function Wo(k; J)  = W0(p, z, h; J)  satisfying 
the following system of differential equations for some seed solution M0(J): 

DzWo(h; J) = 

and initial condition 

where 

pUo(J) + )tWo(J) 
DpWo(h; J)  = pe + X2 Wo(X; J)  (4.1a) 

pWo(J) - XUo(J) 
Wo(X; J)  p2 + X2 

Wo(p, z, X = 0; J)  = Mo(p, z; J)  (4.1 b) 

Uo(J) = p0dl'/o(J) �9 Mot(J) ,  Wo(J) = pOzMo(J) �9 Mot (J )  (4.2) 

However, it usually is very difficult to solve equations (4.1). Particularly for 
the case of nondiagonal Mo(J) = M0(p, z; J)  the problem becomes even 
more complicated. Hence we wish to find some simpler methods. 

Since in equations (3.6) W0(k; J)  only enters evaluated along the pole's 
trajectories ixk(k = 1, 2 . . . .  ), in order to compute the soliton solutions we 
only need Wok(J) := W0k(p, z, X = i~k; J)  (k = 1, 2 . . . .  ). From equations 
(4.1a) and (3.7), Wok(J) satisfies 

1 
0pW0~(J) = ~ [0pp, k " Uo(J) - O,~k �9 Wo(J)]Wok(J) (4.3a) 

1 
OzWok(J) = ~ [0plXk �9 Wo(J) + Oz~k " Uo(J)]Wo~(J) 
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The condition (4.1 b) now reads 

�9 o~(J)l~k-+o = Mo(J) (4.3b) 

In general, it is still very difficult to solve equations (4.3). In the following, 
we shall show that for some kinds of seed solutions, ~oAJ)  can be 
obtained directly. 

Equations (3.7) give 

1 
(0~ + P Op + Oz z) In Ix~(p, z) = 0 (4.4) 

and 

0plxk = 1 0zlxk = 0 (4.5) 
~k-,o P '  21xk ~k-,o 

Hence we have the following lemma. 

Lemma. Let q~ = q~(p, z) be a harmonic function, i.e., 

1 
Vztp (0~ + P 0 0 + = 0 (4.6) 

Then equation (4.4) guarantees that the function 

f P - O.IxkOzq~)do + (4.7) (Oz~kO0~ 

+ OolxkOzq~) dz] 

exists, and equation (4.5) gives 

Yk[q~, Ixkll~k~o = q0 (4.8) 

Further, we have the following theorems. 

Theorem 2. If the seed solution Mo(p, z; J) is dependent on p and z only 
through a harmonic function q~(p, z), i.e., 

Mo(p, z; J)  = M0(q~; J) (4.9) 

then the corresponding scattering wave function ~ok(J) can be directly 
obtained as 

~ok(J) = Mo(q~ ~ Yk[q~, Ixk]; J) (4.10) 

namely, the tp in M0(q~; J) is replaced by the function Y~[q~, Ixk] defined by 
equation (4.7). 

More generally, we have the following result. 
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Theorem 3. If the seed solution M0(p, z; J) is dependent on p and z 
through a set of harmonic functions q~l(P, z) . . . . .  ~p~(p, z)(s >- 1), i.e., 
M0(p, z; J)  = M0(q~l . . . . .  ~s; J), and the following condition is satisfied: 

0 [ ( ~ i  Mo(q~, . . . . .  q~; J ) )  �9 Mo'(tp, . . . . .  q~; J ) ]  (4.11) 
Oq~; 

= 0 ,  i , j = l  . . . . .  s 

then the corresponding scattering wave function can be directly obtained as 

~ok(J) = Mo(qDJ ---) Yk[qOl. I-Lk] . . . . .  qO~ ---) Yk[qO. I~k]; J) (4.12) 

Proof  The condition (4.11) implies 

0 
- -  Mo(q~l . . . . .  q~s; J)  = Ai(J)Mo(~pj . . . .  , q~; J),  i = 1 . . . . .  s 
Oq) i 

(4.13) 

where, for a certain seed solution Mo(~pl . . . . .  q~s; J), {At(J)} is a certain set 
of 2 • 2 DOC constant matrices. Consequently, we have 

Uo(J ) = ~ ai(J)papq~i, Wo(J ) : ~ ai(J)pOzq~ i (4.14) 
i : l  i=1 

Therefore, equations (4.3a) now read 

O0~Ok(J)=P---~-[i=~21~k (O01~kOOq~i--O'P~kOz~i)ai(J)] x l t ~  (4.15) 

OzXIrok(J):~k[~i=l (Oz~kOoCPi+Op~kOzq~i)ai(J)] xIrOk(J) 

From equation (4.13) and the Lemma, we can examine directly that q%k(J) = 
Mo(~Pl ~ Yk[cP~, ~ ]  . . . . .  ~p~ ~ Yk[q0~, I~k]; J) is a solution of equation (4.15) 
and satisfies the initial condition (4.3b). 

In some sense, Theorem 2 can be regarded as a special case (s = 1) of 
Theorem 3. However, in the case of Theorem 2, the condition (4.11) is always 
satisfied automatically. 

5. SOME CONCRETE ED SOLITON SOLUTION FAMILIES OF 
THE SASDSU(2)GFES 

According to the theorems in Section 4, for some "suitable" kinds of 
seed solutions, the scattering wave functions can be written out directly; then 
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the remainders for  generating new soliton solutions are only some algebraic 
calculations. In this section, we give some concrete soliton solution families 
of  the SASDSU(2)GFEs;  most solutions we obtain here are new and some 
of  these new solutions cannot be obtained by the original ISM. 

1. Take the ED Weyl-type solution (Weyl, 1917) of  equations (3.2) as 
a seed solution, i.e., 

. o )  
- f i e *  ' V2~o(p, z) = 0 (5.1) 

By Theorem 2, the corresponding scattering wave function is 

(e: 0) 
~ Ok = _ j2 eV k (5.2) 

where Yk = Yk[q~, IX~] is defined by equation (4.7). From equations (3.6) and 
writing Pk(J) :=  m~k)(J), qk(J) :=  rn~(J) ,  we obtain the related matrix 
elements o f  the ED one-soliton solution Mz(J):  

Itxll 
[ M I ( J ) ] I  1 - e - ,  

P 

• 

Llxll 2 + p2 

pll~ll 

Ipl(J)l 2 exp(Yl + Yt - 2q~) 

fpl(J)r 2 exp(Y l + ~ - q~) - j21ql(J)t2 exp[- (Yj  + ~ - q~)] 

[Ml(J)]12 = [Ml(J)]21 

I~112 + 132 

pllxll 

X 
Pl(J)q l (J )  exp(Yi - Yl) 

[ p l ( J ) l  2 exp(Yl + Y--~ - q~) - j 2 1 q t ( J ) 1 2  exp[-(Y~ + Y~ - q~)] 
(5.3) 

By  equations (3.10), (3.3), and (2.6), we obtain a pair of  dual one-soliton 
solutions (fl, g0 ,  @l, ~l) of  SASDSU(2)GFEs as 

f l (p ,  Z) = l/[M,H]ll 

gl(P, Z) [MIHII2][MIH]II 
(5.4a) 

{~ l ( P ,  Z )  = P[Mte]ll 
,(p, Z) V(F,e, G,e) 

(5.4b) 
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where FIE = 1/[MtE], ,, G,E = [Mr e] 12/[ M, E] 1 I. Similarly, the related elements 
of the ED two-soliton solution M2(J) are 

11~,~2 I 
[M2(J)],, - p2 _ - -  e - ~  

{~,~21 [~Y~N~_____l~( J) m'2)( J)m(2)( J) 
p2A(J) L ~1~-'~ Id'213"-'~ + P 2 

~TU~N~2)(J)  m(I)( J)m(2)( J) ~lTi~N~')( J) m(2)( j)m(t)( J) + 

+ ~ " ~ N ~ 2 ) ( J )  m(l)(J)m(l)(J) ] 

[Mz(J)],2 = [M2(J)]21 

I tx,lX21 [A/~-jN~.___~I)(J) m(Z)(J)m(2)(J) 
o2A(J) L ~2~-1 ~L2I-L-"~ + p2 

~ ' r ~ / ~ 2 ) ( j )  m(,)( j)m(2)( d) 

I, L2IA,~- + p2 

(5.5a) 

AY~3-O-)N~_' )( J ) m(Z)( J )md )( J ) 
la,,l.t,-- ~ i, Llld,- ~ + p 2 bL2kL--- ~ ~2{.s ~ + p2 

+ )~--~/Vr mO)(J)m(t)(J)] 
1~21x--5 I~,----~-i T p5 j (5.5b) 

where 

m(l)(j)m(l)(J) m(2)(J)m(2)(J) m~ - A(J)  
A(J)  = 1~112 + p 2 ]pu212 + p2 I.,L,~- ~ + p2 

m(k)(J)m(O(J) = pk(J)pt(J)e (rk+~-*) - fiqk(J)qt(J)e -(rk+~-'p) (5.6) 

N~k)( J) = pk( J)e(rk-,~), N~k)( J) = qk( J)e-(rk-,P) 

By equations (3.10), (3.3), and (2.6), we obtain a pair of dual two-soliton 
^ 

solutions (/2, g2), (/2, ~2) of SASDSU(2)GFEs as 

f2(P,  z) = 1/[MzE],I  

g2(P, z) [M2e] lff[M2E] 11 

{~ (p, Z) = p[M2H], 1 

2(P, Z) V(FzH, GZH) 

(5.7a) 

(5 .7b )  

where F2H = 1][M2n]u, G2If = [M2H]I2][MzH]ll. 
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By continuing the above process, for each positive integer n, we can, 
in principle, obtain two dual n-soliton solutions of  the SASDSU(2)GFEs.  As 

- z-), where a special case, if we take q~(p, z) = az + b In p + c(1/2p 2 ~ a, 
b, and c are constants, then equations (5.4a) and (5.7a) give the results of  
Letelier  (1982). However,  the solutions (5.4b) and (5.7b) are new, and all 
solutions here need not start from a nonphysical  seed solution. 

2. Let  the seed solution be 

MoH(p, z ) =  (e~-i eic~ 0 J' v2~(p, z) = 0 (5.8) 

where ot is a real constant and the subscript "H"  of  Moll indicates that equation 
(5.8) is a solution of  equations (3.2) only when J = ~. By Theorem 2, the 
corresponding wave function is 

where Yk = YkbP, Ixk] is defined by equation (4.7). From equations (3.6) (with 
J = e) and writing Pk = m~k~n and qk = rn~n, we obtain the related matrix 
elements of  the one-soliton solution M~H as 

1 
[MIH]II -- pllxj[ 

(llxll 2 + p2)lpl -- qle-i~ + p2/Igll2(q~ -- Y1 - Y--~) + 2 Re(pl~Tei~)]tp 
X 

[Ml n] ~ 2 

Iqll2(tP -- Yl -- Y~) + 2 Re(pli~e i'~) 

= [MIH]I2 (5.10) 

e iet Iql[2[p2(y-~l- r -- Ilxll2yl] + [llxll2pli~ - pZqlp-~]ei,~ 
pll~ll Iqll2(q ~ -- Yl -- Y--~) + 2 Re(plZ/Te i ') 

By equations (3.10), (3.3), and (2.6), we obtain a one-soliton solution for 
the SASDSU(2)GFEs as 

fl(P, z) = 1/[M1/4]ll, gl(P, Z) = [Min]lz/[MiH], (5.11) 

Similarly, the related matrix elements of  the two-soliton solution M2tt are 

-- ~I~.L2 I ~ IN~)lZlm~)l 2 [M2H]I 1 ~ ~ 11"1"2 I 
PZAn Lll~llZ(llz212 + p2) 

~rTAr~)m~)m~,) ~:qAr~)m~r)m---~ IN~)121m~)! 2 ] 

-- DI~(I.s ~ q_ p2) -- t.t,2~-~(l&2~- ~ + p2) + ii.g ~ ~ p 2 ) j  
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I ~L 1 ~.L 2 I.ei~ 
[M2Hh2 = [M2n]21 - 02 

Ila'1~21 [, ~r~gl[m~t)[2 

p2An 1~112(1~212 + p2) 

~q2m~)m- - -~  ~Z~qtm~)m-m-m~ ~nq21m~ )12 ] 

+ [I, L212(]1~112 + pZ)j 

(5 .12)  

where 

_ im~)121m~)12 m~)m----- ~ 2 
A n -  (I~LII 2 + p2)(ll, L212 + p2 ) -- I'at]~'2 + p2 = ~nn 

m~t)m---~ = q~tt(q~ - Yk - ~ )  + P ~  ei~' + q/,Pit e-i~' (5.13) 

~ )  = p ~  + q~e -i~ (~ - vk) 

Thus, by equations (3.10), (3.3), and (2.6), we obtain a two-soliton solution 
of SASDSU(2)GFEs as 

f2(P, Z) ---- p[m2H]ll ,  g2(P, Z) = V(Fn, Gtt) (5 .14)  

where FH = 1/[M2nhb GH = [M2H]I2/[M2H]II. 
This process can be continued to obtain a soliton solution of SASD- 

SU(2)GFEs for each positive integer n, and this soliton solution family and 
the seed solution (5.8) itself are all new. 
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